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Development and Evaluation of a Rolling Horizon Purchasing Policy for Cores 

A number of companies utilize end-of-use products (i.e., cores) for remanufacturing or 

recycling. An adequate supply of cores is needed for such activities. Establishing a 

purchasing policy for cores, over a finite planning horizon, requires multi-step ahead 

forecasts. Such forecasts are complicated by the fact that the number of cores in any future 

period depends upon previous sales and recent returns of the product. Distributed lag 

models have been used to capture this dependency for single-period ahead forecasts. We 

develop an approach to using distributed lag models to make multi-period ahead forecasts 

of net demand (i.e., demand minus returns), and investigate the cost implications, at a 

prescribed service level, of using such forecasts to purchase cores on a rolling horizon 

basis. Our results indicate that the effects of errors in the sales forecasts are negligible if 

sales follow an autoregressive pattern but are substantial when sales are more random. 

Dynamic estimation of the parameters in a rolling horizon environment yielded the most 

cost savings at high prescribed service levels (i.e., >0.95). Collectively, our results 

demonstrate the conditions in which companies can best leverage the dynamic nature of 

distributed lag models to reduce the acquisition costs over a finite horizon. 

Keywords: purchasing policies, forecasting, closed-loop supply chain 

1. Introduction 

A number of organizations utilize end-of-use products (i.e., cores) for activities such as 

remanufacturing or recycling. An adequate supply of cores must be on hand to satisfy the 

demand for final products resulting from such activities. The acquisition of cores to support 

reuse activities requires careful planning in order to avoid the uncontrolled accumulation of 

inventory, or unacceptable levels of customer service (i.e., insufficient cores to meet demand). In 

order to establish a purchasing policy for cores, over a finite planning horizon, it is necessary to 

forecast several periods ahead. Such forecasts are complicated by the fact that the number of 

cores in any future period depends upon previous sales and recent returns of the product. A 

dynamic regression (distributed lag) model is often used to capture this dependency in order to 
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make single period forecasts. When future sales estimates are used to forecast product returns, 

then of course the standard error of this forecast is larger than that which would result if future 

sales were known without error.  However, it has been shown (Pierce, 1975), under certain 

conditions, that even when the explanatory variables are forecasted in a distributed lag model, 

the single period forecast variance of the model’s dependent variable is at most as large as the 

variance resulting from forecasting the dependent variable on the basis of its past history alone.  

Thus the use of distributed lag models for forecasting product returns holds promise for use in 

planning based on a rolling horizon.  Previous applications of the distributed lag model to 

forecast product returns, for inventory management or production planning purposes, have been 

mostly limited to single period forecasts based on known sales. In this paper we explore the 

conditions in which to best leverage distributed lag models to make multi-period ahead forecasts 

of product returns, and investigate the cost implications, at a prescribed service level, of using 

such forecasts in a rolling horizon planning environment.  

 Planning (e.g., production or acquisition) decisions are usually made on a rolling horizon 

basis. The typical sequence of activities is as follows: a plan is made for a fixed number of 

periods, the first decision is implemented and the horizon is then rolled forward to the period 

where the next decision needs to be made.  This results in a purchasing policy in which periodic 

acquisition plans are made, with each plan covering a certain fixed number of periods ahead.  A 

purchase taking place in a period incurs a fixed setup cost; there is a marginal cost per unit 

purchased, and a holding cost for carrying inventory from one period to the next.  Kelle and 

Silver (1989b) developed a model for purchasing returnable containers on a rolling horizon basis, 

using such cost considerations. Their model was based on forecasting net demand, that is, the 

consumer demand minus the number of returned products. Thus periods of negative net demand 
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would require replenishment via purchased cores.  In a previous paper (i.e., Kelle and Silver 

1989a), a normal approximation to a multinomial distribution for returns had been developed for 

use in forecasting the net returns. A similar approach to forecasting has been applied more 

recently by Krapp, Nebel and Sahamie (2013b) in an Economic Value Analysis (EVA) 

framework, using a Bayesian approach to perform the estimation. The distributed lag model 

approach to forecasting product returns is considered superior to the normal approximation 

approach due to its dynamic nature (Toktay, Wein and Zenios, 2000; Toktay, 2004; Clottey, 

Benton, and Srivastava, 2012), and small sample performance (Clottey et al., 2012).  However, 

previous applications of the distributed lag model to forecasting product returns (e.g., Toktay et 

al. 2000, Clottey et al. 2012; Krapp, Nebel and Sahamie, 2013a) have not been on a rolling 

horizon basis. Toktay et al. (2000), developed a distributed lag model to forecast product returns 

in which the lags after which a sold product is returned were represented by discrete geometric 

and negative binomial delay functions. Krapp, Nebel and Sahamie (2013a) used a distributed lag 

type model with a discrete Poisson delay function to forecast product returns. Clottey et al. 

(2012) showed that a distributed lag model with a discrete delay function used to estimate 

continuous time, can lead to biases when used to forecast product returns. They developed a 

method for estimating a continuous exponential delay function in the distributed lag model. 

Clottey and Benton (2014) extended this approach to forecasting product returns with any 

properly specified continuous delay function. These previous studies typically employed the 

distributed lag model to make single period ahead forecasts. A rolling horizon requires the 

estimation of future sales in order to forecast product returns in multiple future periods. This 

leads to additional forecasting complications, which need to be resolved before the distributed 

lag model can be successfully employed on a rolling horizon basis. Krapp et al. (2013b), in a 
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multi-period ahead context, investigated the use of a forecasting model of product returns based 

on the “large sample” normal approximation for the sum of Bernoulli random variables. In this 

study we develop an approach to using the distributed lag model to make multi-step ahead 

forecasts in a rolling horizon purchasing context.      

There have been other studies which have considered various methods for incorporating 

previous sales into the forecast of product returns, including simulation based approaches (e.g., 

Srivastava and Srivastava, 2006), fuzzy logic based approaches (Hanafi, Kara, Kaebernick 

(2009), and use of Markov chains (e.g., Kiesmuller and van der Laan, 2001).  Krapp et al. 

(2013b, p990) noted that the distributed lag model “can be seen as the most accurate approach to 

estimate product returns” among these previous approaches. A methodological review of these 

forecasting approaches can be found in Toktay (2004). Similarly, there have been various 

methods used to include forecasts of product returns in models to facilitate inventory 

management, including queuing based approaches (e.g., Toktay et al. 2000), EVA based 

approaches (e.g., Guide and van Wasenhove, 2001; Krapp et al. 2013b), and mathematical 

optimization (e.g., Kelle and Silver, 1989b). A review of these approaches can be found in Souza 

(2013). There are however two issues which have not been investigated in these previous studies: 

1) how much does the accuracy in the sales forecast affect the cost performance of the rolling 

horizon acquisition plan? and 2) how big a cost benefit is there in using a dynamic approach to 

forecasting (e.g., using Bayesian estimation with parameters of the net demand distribution 

updated over time), for the rolling horizon purchasing policy, versus the statistic approach (i.e., 

maximum likelihood estimation of the asymptotic distribution for the distributed lag model)? 

These are two important questions which we seek to address in this paper.  
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 The next section of this paper describes methods developed by Kelle and Silver (1989b) 

to create a purchasing policy using forecasts of net demand. In section 3 we develop an approach 

to making multi-period ahead forecasts using the distributed lag model to forecast the net 

demand distribution, during the lead time, for a finite horizon acquisition plan. In section 4 we 

investigate the cost considerations, at a prescribed service level, of the distributed lag model 

approach for multi-period purchasing decisions. We also compare the accuracy of the distributed 

lag model approach to that of a widely used forecasting method. In the last section, we discuss 

the substantive and methodological implications of the results for acquiring cores in closed-loop 

supply chains. 

2.  Optimization Model 

The optimization model is based on the formulation found in Kelle and Sliver (1989b) with 

notation as follows. The net demand to be satisfied in each period is the estimated demand for 

each period (i.e., 𝑑௧) minus the number of returned products (i.e., 𝑚௧) that can be reused. Since 

the product returns are random, the net demand is also random. A key objective when sourcing 

cores is to minimize the total of acquisition and expected inventory holding cost over the finite 

time horizon considered (e.g., H periods into the future), while at the same time ensuring a 

prescribed high service level in order to meet random net demand. Given t is the current period, 

the order quantities  𝑄௧ା௝ for j=1,2,…,H are to be determined. The problem formulation is: 

   
1

min
H

t j t j t j t j t j t j
j

c Q S Q h E I 
     



            (1) 

Subject to   Pr 0t j t jI      ; 1,....,j H               (2) 

  1t j t j t j t jI I Q x                   (3) 

   t j t jQ Q M               (4) 
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and  0t jQ                 (5) 

where the following notation has been used: 

t jc   is the unit purchasing cost at time period t j ;  t jS  is the fixed setup cost for placing an 

order at time period t j ; t jh  is the average inventory holding cost represented as a fraction of 

the unit purchasing cost at time period  t j ;  t j t j t jx d m    is the net demand during period 

t j ; t jI   is the net inventory level (i.e., on-hand minus backorders) at the end of the period; 

 max ,0t j t jI I
  is the on-hand inventory level; t j   is the prescribed service level in period  

t j ;  t jQ  is an indicator variable for when an order is placed (i.e., when 0t jQ   ); M is a 

large number which ensures that  t jQ  is linked to the decision variable t jQ  .  

  Let t j  denote  t jE x  . Kelle and Silver (1989b) showed that when the service level 

t j   is at least 0.85, as typically prescribed in practice, then   1t j t j t j t jE I I Q         is a 

good approximation of  t jE I 
 . 

The service level constraint (2) can be represented as: 

  1t j t j t j t jF I Q        

or 

  1
1t j t j t j t jI Q F 

              (6) 

where t jF   is the cumulative distribution function (i.e., CDF) of net demand, t jx  , at time t j . 

Our study departs from the approach found in Kelle and Silver (1989b) in that we allow the CDF 

of net demand (i.e., t jF  ) to be dynamically approximated by the CDF of the forecast of net 

demand, 𝑥ො௧ା௝ ൌ ൫𝑑௧ା௝ െ 𝑚෥௧ା௝൯, for each period in the planning horizon (i.e., j=1,…, H periods), 
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where the distribution for 𝑚෥௧ା௝ is determined via the methods described later in section 3. The 

estimates  𝐹෠௧ା௝
ିଵ ൫𝜉௧ା௝൯ and 𝑥ො௧ା௝ are then utilized in constraints (2) and (3) to obtain solutions to 

the optimization problem. A static estimate of the CDF of net demand (i.e., ˆ ˆ
t jF F  ) can be 

used instead, by fitting an empirical distribution to the net demand data (i.e.,  𝑥௜ ൌ 𝑑௜ െ 𝑚௜ ; 𝑖 ൌ

1, … , 𝑡 ) known at time t and using the resulting parameter estimates for all future forecasts. In 

section 4 we perform an analysis comparing our dynamic approach to the static empirical 

distribution approach.  

 In a rolling horizon procedure, only the decision related to the first period of the solution 

to the H-period problem above is implemented. At the next period, the inventory status is revised 

and the multi-period problem is updated as more information becomes available. The solution 

procedure is repeated again, with only the first order being launched.  

 3. Forecasting Multi-period Ahead Product Returns with the Distributed Lag Model 

Let  𝑛௧ and 𝑚௧ denote the number of products sold and returned at time t, respectively; the 

general form of the distributed lag model is as follows: 

𝑚௧ ൌ 𝑝𝛽ଵ𝑛௧ିଵ ൅ 𝑝𝛽ଶ𝑛௧ିଶ ൅ ⋯൅ 𝑝𝛽௧ିଵ𝑛ଵ ൅ 𝜀௧ ; For t= 2, 3,….., T.  (7) 

 (7) is known as the finite distributed lag model. The 𝜀௧ (error) terms are usually assumed to be 

additive white noise (i.e., normally distributed, independent of the 𝑛௧’s, independent of each 

other and have a constant variance given by 𝜎ଶ). The parameter 𝑝 is the probability that a sold 

product will ever be returned. Each 𝛽௞ (k=1,…, t-1) term in (7) is the kth reaction coefficient, 

and it represents the proportion of 𝑛௧ି௞ (i.e., sales in period t-k) that contributes units towards 

𝑚௧ (i.e. the returns in period t). T is a finite period and represents the maximum number of 

periods of data available for estimation. When historical sales and return data is used for 

estimation, there are usually many terms in (7) and little is known about the form of the lag. In 
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that case, direct estimation via Ordinary Least Squares uses up a large number of degrees of 

freedom and is likely to lead to imprecise parameter estimates because of multicollinearity. This 

issue can be avoided by assuming that the 𝛽௞ coefficients are functionally related, and an 

appropriate method is used to estimate them. In the context of product returns, the functional 

relationship between the 𝛽௞ coefficients is called the delay function and it represents the time for 

returns to be made. Approaches that have been used to represent the delay include the Geometric 

and Negative binomial (Toktay et al. 2000), Exponential (Clottey et al., 2012), Poisson (Krapp et 

al., 2013a), and Gamma (Clottey and Benton, 2014) distributions.  Using the distributed lag 

model approach and given a forecasting horizon of H periods into the future, an estimate of 

products to be returned j (=1,2,…,H)  periods into the future, 𝑚෥௧ା௝  , is given by: 

𝑚෥௧ା௝ ൌ 𝑝𝛽ଵ𝑛෤௧ା௝ିଵ ൅ 𝑝𝛽ଶ𝑛෤௧ା௝ିଶ ൅ ⋯൅ 𝑝𝛽௝𝑛௧ ൅ ⋯൅ 𝑝𝛽௧ା௝ିଵ𝑛ଵ ൅ 𝜀௧ ,   (8) 

where 𝑛෤௧ା௝ is a potential “non-optimal” sales forecast j periods into the future. Methods used to 

estimate 𝑛෤௧ା௝ are described later in this section. Note that we use the tilde sign (i.e., ~) for 

forecasts when that forecast is directly based on a sales forecast, and we use the hat (i.e., ^) sign 

otherwise. Pierce (1975) noted that forecasts of the dependent variable in a distributed lag model 

can also be obtained by representing the dependent variable as a univariate linear process (e.g., a 

function of only product returns and not previous sales). By representing the coefficients of (8) 

as a polynomial function of lags (i.e., the Almon model), Pierce (1975) was able to analytically 

show that the mean squared error (i.e., MSE) of (8)  is never greater than that of the univariate 

process of only product returns, since the information available in the univariate process, at the 

forecast origin (i.e., period t) is a subset of the information available in (8). His results suggest 

that it is possible to obtain more accurate forecasts of product returns using such forecasts in (8), 

compared to forecasting product returns based on historical returns data only. However, those 
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analytical results were based on a delay function representation which resulted in a closed-form 

representation of the MSE for (8).  In this study we use the recent Gamma representation of the 

delay function which was shown by Clottey and Benton (2014) to be superior to the existing 

discrete geometric and negative binomial delay functions in terms of accuracy and flexibility, but 

results in an MSE which cannot be expressed in an analytic form. With the gamma delay 

function the distributed lag model in (8) becomes: 

 
        11 1 1

1 11 1... t jj
t j t j t tm p e n j e n t j e n


    


     

  
        

  .  (9) 

The parameter 𝜆 is the average delay rate (i.e., the average number of lags per return period), 𝛼 

is the shape parameter which, along with 𝜆, determines the lag with the largest coefficient. To 

facilitate the dynamic updating of the parameters, we adopt a Bayesian approach (Rossi, Allenby 

and McCulloch, 2005). We first specify Gamma, Inverted Gamma and Uniform(0,1) conjugate 

priors and then use a modified version of the Monte Carlo Markov Chain (MCMC) algorithm of 

Clottey and Benton (2014) to obtain the estimates. The use of such conjugate priors, which allow 

the coefficients of the distributed lag model to integrate to unity across time, results in a posterior 

distribution obtained via the MCMC algorithm which is identifiable (Gelfand and Sahu, 1999). 

The period forecast of the distribution for t jm   (i.e., the posterior distribution for t jm  ) is then 

obtained by making the relevant substitutions for 𝛼, 𝜆 and 𝑝 into the part of (9) which does not 

include the t  term. The CDF of net demand (i.e., t jF  ) can then be approximated by the CDF of 

the forecast of net demand, 𝑥ො௧ା௝ ൌ ൫𝐷௧ା௝ െ 𝑚෥௧ା௝൯, for each period in the planning horizon. The 

point estimate is based on the posterior median (i.e., 𝑚෥௧ା௝). The median is used since the 

resulting posterior distribution of product returns is typically skewed (Clottey and Benton, 2014).  
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Details of the MCMC procedure for estimating the CDF of the net demand (i.e., t jF  ) for period t 

+ j are provided below: 

i) Start with initial point estimates 𝑝̂ ൌ 𝑝̂௢௟ௗ,𝛼ො ൌ 𝛼ො௢௟ௗ , 𝜆መ ൌ 𝜆መ௢௟ௗ and 𝜎ොଶ ൌ 𝜎ො௢௟ௗ
ଶ . 

ii) Generate: 𝛼ො௡௘௪ ൌ 𝛼ො௢௟ௗ ൅ 𝜉ଵ;  𝜆መ௡௘௪ ൌ 𝜆መ௢௟ௗ ൅  𝜉ଶ;  𝜉௜~𝑁ሺ0, 𝑠𝑡𝑒𝑝ଶሻ; 𝑖 ൌ 1,2 ; step is a 

numerical value chosen to enable the algorithm to have sufficiently navigated the 

space where the posterior has high mass. 

iii) Compute 𝛾ଵ ൌ 𝑚𝑖𝑛 ൜1,
ℓ൫ఈෝ೙೐ೢ,ఒ෡೙೐ೢ, ௣ො,ఙෝమ൯గሺఈෝ೙೐ೢ,ఒ෡೙೐ೢሻ

ℓ൫ఈෝ೚೗೏,ఒ෡೚೗೏, ௣ො,ఙෝమ൯గሺఈෝ೚೗೏,   ఒ෡೚೗೏ሻ
ൠ; where 𝜋ሺ. ሻ is the prior for (α,λ); 

ℓሺ. ሻ Is the likelihood function. 

iv) With probability 𝛾ଵ,  𝜆෡ ൌ 𝜆መ௡௘௪ and , 𝛼ො ൌ 𝛼ො௡௘௪; else  𝜆෡ ൌ 𝜆መ௢௟ௗ and 𝛼ො ൌ 𝛼ො௢௟ௗ. 

v) Generate: 𝑝̂௡௘௪ ൌ 𝑝̂௢௟ௗ ൅ 𝜉;  𝜉~𝑁ሺ0, 𝑠𝑡𝑒𝑝ଵ
ଶሻ ; step1 is chosen in a similar way as step 

in ii). 

vi) Compute 𝛾ଶ ൌ 𝑚𝑖𝑛 ൜1,
ℓ൫ఈෝ ,ఒ෡, ௣ො೙೐ೢ,ఙෝమ൯గሺ௣ො೙೐ೢሻ

ℓ൫ఈෝ ,ఒ෡, ௣ො೚೗೏,ఙෝమ൯గሺ௣ො೚೗೏ሻ
ൠ; where 𝜋ሺ. ሻ is the prior for 𝑝. 

vii) With probability 𝛾ଶ,  𝑝ෝ ൌ 𝑝̂௡௘௪; else 𝑝ෝ ൌ 𝑝̂௢௟ௗ. 

viii) Generate: 𝜎ො௡௘௪ଶ |𝒎,𝒏, ሺ𝛼ො, 𝜆መሻ, 𝑝̂ ~
జ
భೄభ
మ

ఞഔభ
మ ; with 𝜈ଵ ൌ 𝜈଴ ൅ ሺ𝑇 െ 1ሻ, 𝑠ଵ

ଶ ൌ ఔబ௦బ
మାሺ்ିଵሻ௦మ

ఔబାሺ்ିଵሻ
; 

where 𝑠଴
ଶ and  𝑣଴ are as defined in Clottey et al. (2012; p600). 

ix) Repeat steps ii-viii, 10,000 times [Rossi et al. (2005); Clottey et al. (2012)]. 

x) Obtain 𝑛෤௧ା௝ estimates for periods t to t + j-1.  

xi) To obtain the empirical CDF of 𝑚෥௧ା௞, substitute the 𝑝̂,𝛼ො, 𝜆መ estimates obtained from 

steps i-ix, along with the estimates obtained in step x, into the part of (9) which does 

not include the t  term.  

xii) The estimate of t jF   is the resulting CDF for ൫𝑑௧ା௝ െ 𝑚෥௧ା௝൯. 

A key issue for managers employing the methods described thus far to make purchasing 

decisions is whether the accuracy in the non-optimal sales forecast (𝑛෤௧ା௝) has a major effect on 

the performance of the proposed method for making acquisition plans. To investigate this issue 

we designed a study based on the framework, for evaluating the effect of forecast error in supply 
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chain planning, proposed by Fildes and Kingsman (2011).  

3.1. Evaluating the effect of sales forecast accuracy on the distributed lag model 

When there is monthly sales data with no outliers and non-seasonality, models of the form below 

have been shown (e.g., Makridakis and Hibon, 2000; Fildes and Kingsman, 2011) to adequately 

characterize situations commonly encountered in practice: 

𝑛௧ ൌ  𝛿 ൅ 𝜌𝑛௧ିଵ ൅ 𝑒௧ െ 𝜃𝑒௧ିଵ 1, 1   ,      (10) 

where 𝑒௧ is random white noise and 𝛿 is historical average sales. The equation in (10) can be 

used to represent a variety of sales situations such as sales as random noise (i.e., 𝜃 and 𝜌 are both 

zero), sales as an ARIMA (0,1,1) process (i.e.,  𝜌 ൌ 1 and 𝜃 ൏ 1), or sales as an AR[1] process 

(i.e., 𝜌 ൏ 1 and 𝜃 ൌ 0). The error variance for the k-step ahead forecast for an ARIMA (0,1,1) 

process remains constant with increasing k, which is similar to that of the random noise process, 

therefore the ARIMA(0,1,1) representation of sales was omitted from our analysis in favor of the 

random noise process.  Fildes and Kingsman (2011) considered two cases in their study: the 

random noise scenario and the AR[1] process with 𝜌 ൌ 0.9, which is an appropriate series for 

when exponential smoothing is near-optimal. These two cases are considered to be representative 

extremes for illustrating the effect of forecast error (Fildes and Kingsman, 2011). The proposed 

methodology and insights from this paper should carry over to the analysis of other 

specifications of sales based on (10).  The one-step ahead sales forecast for period t, based on 

(10) is given by:  

𝑛ො௧ ൌ  𝛿 ൅ 𝜌𝑛௧ିଵ െ 𝜃𝑒௧ିଵ,         (11) 

where 𝑒௧ିଵ is the observed forecast error in the previous period which is known as at time t. The 

white noise terms are assumed normal although the sales and the forecasts of sales are 

constrained to be positive. The k steps ahead forecast are given by: 
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𝑛ො௧ା௞ ൌ  𝛿 ൅ 𝜌𝑛ො௧ା௞ିଵ െ 𝜃𝑒௧ሺ𝑘 െ 1ሻ,        (12) 

where 𝑒௧ሺ𝑘 െ 1ሻ is the forecast error for future period t+k-1 estimated at time t. The general form 

for the forecast error variance 𝑒௧ሺ𝑘ሻ for an AR[1] model, k steps ahead is: 

   2

2
2

1
var

1

k

te k









, 

where   is the standard deviation for te  at time t, which is also the standard deviation for the k 

steps ahead random noise sales model. Thus, the standard deviation for the AR[1] model 

increases with k while that of the random noise model stays constant. The forecast in (12) may be 

non-optimal due to a sub-optimal forecasting method being used to generate forecasts from (10). 

Thus the actual k-steps ahead sales forecast is given by: 

𝑛෤௧ା௞ ൌ  𝑛ො௧ା௞ ൅ 𝜐௧          (13) 

so that the actual forecast (i.e., 𝑛෤௧ା௞) equals the optimal forecast (i.e., 𝑛ො௧ା௞ ) plus white noise 

(i.e., 𝜐௧). Fildes and Kingsman (2011) used an error standard deviation for 𝜐௧ specified as 𝜅𝜎, 

where 𝜅 was chosen to be 0%, 20% and 50% of  . They also used values of  which would 

result in coefficient of variations (CVs) ranging from 0 to 0.4, noting that these were plausible 

since surveys of forecasting accuracy for fast moving items, reported in the literature, suggested 

a CV of 0.25 as the norm (Fildes and Kingsman, 2011). The use of (13), with varying levels of 

  and 𝜅 ensures that the effects of both sales (i.e.,  ) and forecast error volatility (i.e., 𝜅𝜎), can 

be evaluated on the performance of the proposed method for determining the purchasing policy 

for cores in a rolling horizon. In the next section we perform a numerical study that allows us to 

examine the cost consequences of acquiring cores using multi-step ahead forecasts in a rolling 

horizon. The analysis is performed at specified service levels over a variety of forecasting, sales 
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and demand situations. We also compare the accuracy of the distributed lag model approach to 

that of the Holt method which is a widely used forecasting approach. 

4. Numerical Analysis 

4.1. Parameter values 

The fixed parameters for the numerical analysis are shown in Table 1.  

To generate product returns, the value of the parameters for  𝑝, 𝜆, and 𝛼 in Table 1, were 

used in (9) with a random value drawn from the standard normal distribution being used for the 

error terms (i.e., 𝜀௧) in (9).  One hundred and twenty periods (e.g., 120 months worth) of returns 

data were generated with this approach. Demand data for these cores were generated by drawing 

from a uniform distribution in the interval zero and 3 times the average product returns during 

the 120 periods (i.e., this ensured that demands were on average 50%  larger than the supply of 

product returns, thereby requiring the purchase of additional cores to make up any shortages).  

Sales data were generated from (10) either as a random noise [RN] series (i.e., 𝜃 ൌ 𝜌 ൌ 0) or as 

an autoregressive [AR] series (i.e., 𝜃 ൌ 0;𝜌 ൌ 0.9), as previously explained. Average sales (i.e., 

𝛿) was set at 2,000 units with the standard deviation (i.e.,  ) based on the CV levels (0, 

0.1,0.2,0.3 and 0.4). Forecasts for sales were performed using (13) with 𝑒௧ሺ𝑘ሻ drawn from a 

normal distribution with zero mean and variance  var te k , when sales were AR, and  2  when 

sales were RN. Since   2var te k  , in order to facilitate comparisons between AR and RN 

generation processes we chose different values of 2 , for generation using the AR process 

compared to that of the RN process, such that both generation processes had equal CV levels. 

Values for 𝜐௧ were drawn from a normal distribution with zero mean and standard deviation 𝜅𝜎, 

with values of 𝜅 chosen per the description in section 3. Service levels were set at 85%, 90%, 

95% and 99% respectively. The CDF of net demand (i.e., t jF  ) was estimated using a dynamic 
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approach (i.e., using the Bayesian estimation approach described in section 3 to update the 

parameters each period) and static approach. The distributed lag model has an asymptotic normal 

distribution (Pindyck and Rubinfield, 1998), so we used the fitdistr() function in the R software 

package (which uses maximum likelihood) to obtain parameter estimates for the static approach. 

Details about the fitdistr() function can be found in Ricci(2005). Table 2 provides a summary of 

the effects investigated in the analysis. 

4.2. Implementation 

For each of the forecasting approaches (i.e, RN or AR) twelve periods of sales, with the 

corresponding eleven periods of product returns data (e.g., each period representing a month), 

was used as the initial estimation data set. The system starts out with the products returned by the 

end of period 12 as the initial inventory. Purchase plans for three periods ahead, are made 

starting from period 13 till period 117 (i.e., 106 periods of forecasting were considered). At the 

beginning of each period the following sequence of activities occur using the data to date: (1) 

estimate the distribution of product returns as at the end of the previous period, (2) forecast the 

sales for the current period and two additional periods ahead using either the RN or AR 

approach, (3) use the sales forecasts to estimate the future net demand distributions as described 

in sections 2 and 3, (4) estimate the quantity of cores that should be acquired for the current 

period and the next two periods ahead using the approach described in section 2, and (5) acquire 

only the estimated quantity for the current period and update all inventory positions. Five 

replications, at each combination of levels, were carried out and detailed examination analysis of 

these runs showed that there was very little difference between the outcomes of each of the 

replications. The costs recorded for each combination of levels was the average total cost per unit 

over the five replications. Common fixed random number seeds were employed to reduce 
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variance (Law and Kelton, 2000). The analysis was created and performed in R version 3.2.0. 

Cplex was used for the optimization described in section 2, via the Rglpk library package in R. 

The demand and forecast generation processes, and the rolling schedule calculations were 

verified against manual calculations. 

4.3. Results 

We first analyze the results concerning the effect of sales forecast accuracy on the cost 

performance of the rolling horizon acquisition plan. We then analyze the results of using a 

dynamic versus static approach to estimating the net demand distribution for rolling horizon 

acquisition decisions. Relative performances are based on the “regret” of using one approach 

versus the other (e.g., sales forecast vs. actual sales; dynamic vs. static estimation of net demand) 

in the rolling horizon environment.  

4.3.1. Effects of sales forecast accuracy  

With dynamic parameter estimation, we found that the forecast error variance (i.e., EV) did not 

have any effect at all levels of the other factors. A possible reason for this unexpected result is 

that the dynamic updating of parameters via the Bayesian approach is more affected by high 

variability in historical sales (i.e., there are more historical sales data points used for estimation), 

which leads to less accurate returns forecast, than by the forecast error variance, which only 

affects the accuracy of the few k-step ahead forecasts used for net demand estimation. That is to 

say, that the effect of the sales forecast error variance (i.e., EV) could not be separated from the 

effect of sales volatility (i.e., CV), when forecasting using the Bayesian estimation approach 

described in section 3, therefore it was omitted from subsequent analysis. 
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Table 3 shows the relative costs of using sales forecasts in (9), to make the rolling horizon 

decision, versus using the actual sales amount when the CDF of net demand was estimated 

dynamically. 

It can be seen that higher coefficients of variation, resulting in less accuracy in the sales 

forecasts from Equation (13), generally lead to higher costs when the sales forecasts were used as 

compared to using the actual sales amounts.  These cost differences become less consequential at 

higher service levels. When sales have the autoregressive (AR) pattern, the percent regret in not 

using actual sales to make the rolling horizon acquisition is at most 1.3%, and therefore the 

accuracy of the sales forecast is unimportant in this situation. In contrast, sales which appear to 

have a random pattern (i.e., RN) result in significant cost differentials when sales forecasts are 

used instead of actual sales. Thus, the accuracy of the sales forecast is important in that situation.  

 A possible explanation of the above result is that updating the distributed lag model 

parameters via Bayesian estimation (i.e., dynamic estimation) is more consistent when the sales 

follow a particular pattern (which in this case was an autoregressive series). However, when the 

pattern of the data is random then dynamic estimation is likely to perform poorly with increasing 

volatility in the sales data (e.g., higher CV levels). Thus, while forecast accuracy is unimportant 

with the autoregressive model of sales, it resulted in significantly higher costs when sales were 

presented as a random noise series. The difficulties of Bayesian updating when a univariate 

series is random and highly volatile has been noted in previous studies (e.g., Fildes, 1986). Our 

results suggest that this also carries over to multivariate series (e.g., distributed lag models). 

 The same analysis was performed (not shown) for when the CDF of net demand was 

estimated via a static approach. The percent regret, in those results, were all found to be 

insignificant (i.e., sales forecast accuracy had no effect for all given service levels, when net 
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demand was estimated via the static approach). Because there is no updating with the static 

approach (and only a few periods of sales forecast were combined with actual sales in previous 

periods to estimate the parameters of the distribution) the forecasts had little to no effect on the 

resulting estimate of the distribution. Thus the inconsequential cost differences with the static 

approach to estimation, in this case.   

4.3.2. Effects of estimating the net demand distribution dynamically  

Table 4 shows the relative costs of using sales forecasts when dynamically estimating the net 

demand distribution versus static estimation of the net demand distribution.  

It can be seen that higher coefficients of variation result in lower cost differences when 

the static approach to estimation of net demand is compared to the dynamic approach over all 

service level, sales model, and sales forecasting combinations. The dynamic approach resulted in 

a cost reduction at a high service level (e.g., 99%) for both autoregressive (AR) and random 

(RN) representations of sales. The cost reductions were higher for the autoregressive 

representation for sales, with inconsequential cost differences being experienced at the 95% 

service level in this case. When sales had a random representation then lower costs were 

experienced with the dynamic approach, compared to the static approach, at a 99% service level 

when actual sales (i.e., no sales forecasts) were used in the estimation. When forecasted sales 

were used in the same situation, lower costs were only experienced at the 99% service level 

when the sales forecast accuracy was high (i.e., corresponding to a sales CV of 0 or 0.1). At 

lower service levels (i.e., 85% and 90%), the dynamic approach resulted in higher costs than the 

(simpler) static approach to estimating the CDF of net demand. 

 A possible explanation of the relative performance of dynamic versus static estimation, in 

this case, is the nature of the net demand distribution obtained with dynamic estimation. Analysis 
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of the plots of the net demand distributions, obtained via the dynamic approach, showed that they 

often resulted in longer tails (i.e., skewness) than the distribution obtained with the static 

approach. Skewed posterior distributions for Bayesian estimation of product returns has been 

observed by Clottey and Benton (2014), and our results are consistent with this observation. The 

static approach used the large sample approximation (described earlier) to estimate the net 

demand, which results in a normally distributed net demand distribution. At high service levels 

(e.g., 99%), the skewness resulted in significantly lower service level units (i.e.,  1
t j t jF 
  ) in 

each period than the service level units from the static approach (i.e.,  1
t jF 
 ), and this 

resulted in lower costs. The lower service level units could also lead to an increase in the 

stockout risk; however stockouts were negligible for both the autoregressive and random noise 

representation of sales, although the latter representation resulted in a marginally greater number 

of backlogged units. The skewness had a negative effect at lower service levels, with dynamic 

estimation resulting in worse cost performance with the desired service levels set at 85% and 

90%, respectively. The performance differences become inconsequential at all service levels as 

sales became more volatile (i.e., higher CVs) resulting in less accurate estimates of the net 

demand distribution. This was observed irrespective of the approach used to estimate the net 

demand distribution.  

4.4. Accuracy comparison with existing methods 

We compared our approach to the Holt’s forecasting method, which is a widely applied 

forecasting procedure. To demonstrate the capability for predicting multi-step ahead product 

returns, we conducted three-step ahead forecasts using both methods. Our basis for comparison 

is the Mean Absolute Scaled Error (MASE) measure proposed by Hyndman and Koehler (2006). 

The MASE can be used for commonly occurring situations with data, namely data which 
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contains zeros and/or has occurrences of consecutive observations which take the same value. 

Such situations can lead previously recommended measures of forecast accuracy such as the 

Mean Absolute Percentage Error (MAPE) to result in undefined values. In addition, the MASE 

does not suffer from issues of scale dependence which plague other commonly used measures 

(e.g., Mean Square Error-MSE and Mean Absolute Deviation-MAD). The MASE scales the error 

of each forecast by the in-sample MAD of the naïve forecast method (i.e., the forecast based on 

the most recent observation). For the 3 step ahead naïve forecast, the in-sample MAD is 

calculated on a rolling basis. Thus, given an initialization sample of k periods and a total number 

of observations T for the data, the MAD of the three period ahead naïve forecast method is 

obtained by: 

1. Selecting the observation at time k+i−1 as the forecast estimate for period k+3+i−1. The 3 
step ahead error on the forecast for time k+3+i−1 is then computed. 

2. Step 1 above is then repeated for i=1,2,…,T−k−3+1. 
3. The in-sample MAD is then computed based on the 3 step ahead errors obtained as at 

period k+i-1. 

Three step ahead forecasts, using both the dynamic distributed lag model approach and the 

Holt’s method, were made in a rolling horizon manner (i.e., for a given i, data for periods 

1,…..,k+i-1 were used to make the forecast for period k+3+i-1; the next forecast would use data 

for periods 1,…..,k+i, to make the next three period ahead forecast, and so on. Errors for each of 

the forecasts were calculated based on the deviation of the forecast from its corresponding out of 

sample value). We compare the out-of-sample performance (based on forecasting the data in the 

rolling three period hold-out sample using only information from the fitting period). The MASE 

is less than one if it arises from a better forecast than the average three period ahead naïve 

forecast computed in-sample. Conversely, it is greater than one if the forecast is worse than the 

average three period ahead naïve forecast computed in-sample. A portion of the 120 periods of 
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data generated in Section 4.2, were used in the analysis. The initialization sample was from 

period 1 to 12 (i.e., k =12). We evaluated the MASE from period 13 to period 36. A similar size 

dataset was used in Hyndman and Koehler (2006). Consistent with each approach, the Holt’s 

method was only applied to the product returns data, while the distributed lag model approach 

was applied to data consisting of both the returns and sales in each period. Sales forecasts were 

used to make the three period ahead forecast estimates with the distributed lag model approach. 

Sales (historical and forecasts) were generated as RN or AR processes at the five CV levels 

described previously in Section 4.1.  

Table 5 shows that the MASE of our proposed dynamic estimation approach is superior 

to the Holt’s method when sales have the autoregressive (AR) pattern, at all CV levels. 

Conversely, the Holt’s method had a MASE superior to that of our proposed method when sales 

were generated as random noise (i.e., RN). It can be seen that higher coefficients of variation, 

resulting in less accuracy in the sales forecast from Equation (13), yielded higher MASE values 

when sales followed an AR pattern. However the effect of CV levels on MASE values when 

sales followed an RN pattern, was not as conclusive (i.e., MASE values for CV levels of 0.2 and 

0.3 were less than those at CV levels of 0, 0.1 and 0.4).  

Collectively, these results support our earlier observation that our distributed lag 

approach to estimating the net demand on a rolling horizon basis may be best suited for use when 

sales follow an autoregressive pattern.  

5.  Discussion and Conclusions 

In the last decade distributed lag models have become increasingly attractive for use in 

forecasting the returned products which are the basis of various reuse operations (e.g., Toktay et 

al., 2000; Toktay, 2004; Clottey et al. 2012; Clottey and Benton, 2014). Previous applications of 
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the model to forecasting product returns for inventory management or production planning 

purposes have been mainly limited to single period forecasts based on known sales. In this 

research we have developed an approach to making multi-period ahead forecasts via Bayesian 

estimation of the distributed lag model which dynamically approximates the net demand 

distribution for a finite horizon acquisition plan. The methodological issues we explored were 

aimed at evaluating: 1) the effect of sales forecast accuracy, and 2) the use of the dynamic 

estimation (i.e., Bayesian) approach versus a static (i.e., MLE) approach to estimating the net 

demand distribution, on the cost performance of a rolling horizon purchasing policy for cores.  

 When making multi-period ahead forecasts, using the distributed lag model, estimates of 

future sales are required; this means that the accuracy of those estimates can affect the cost 

performance of such forecasts. Our results indicate that the accuracy of the sales forecast is 

inconsequential if sales follow an autoregressive pattern, since then the Bayesian estimation 

approach is able to exploit the autoregressive nature of the sales to correctly update parameters 

as more sales information is obtained from period to period. Thus, the net demand estimates 

obtained using the sales forecast were comparable to those obtained using actual sales in that 

situation. This suggests that sales data which is consistent with an autoregressive series is the 

type of scenario where Bayesian estimation of the net demand distribution is least likely to be 

affected by the accuracy in the sales forecast. The use of autoregressive models to estimate sales 

is common (Pindyck and Rubinfield, 1998). Monthly sales which are random, result in large cost 

discrepancies if using sales forecasts versus actual sales in the dynamic estimation of net 

demand. These cost discrepancies became large with highly volatile (i.e., sales with a high 

coefficient of variation) random sales. Thus, forecast accuracy has a significant negative impact 
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on costs if using the dynamic (i.e., Bayesian) estimation approach when sales are random and 

highly volatile.  

 While the inaccuracy of the sales forecast may be due to both volatility in sales and 

forecast error volatility (Fildes and Kingsman, 2011), we found that the effect of forecast error 

variance could not be separated from the effect of sales volatility when the parameters in our 

model were dynamically updated using the Bayesian approach. That is to say that forecast error 

variance had no effect on the cost performance while sales volatility did, with the dynamic 

approach. In future research, it may be possible to use a ‘prior’ to model the sales forecast error 

variance explicitly in the Bayesian framework, in which case the effect of sales forecast error 

variance may be measured and separated from sales volatility when estimating the net demand 

distribution. 

 The cost benefit of using the Bayesian estimation of net demand versus the static 

(asymptotic) approach, only occurred at high service levels (i.e., >95%) . This suggests that 

companies wanting to employ the proposed Bayesian approach to estimate the net demand, for 

use in determining the purchase quantities for cores on a rolling horizon basis, can best leverage 

the approach if high service levels are sought. The static approach resulted in lower costs than 

the Bayesian approach when service levels were in the 0.85 to 0.95 range. These lower service 

levels can be more practical for the cost structures of some companies.  

 A number of research questions remain, in particular whether the results generalize to 

other (more complex) closed-loop supply chains via the consideration of quality uncertainty, 

along with the timing and quantity uncertainty modeled with the distributed lag model, as well as 

other approaches to representing the net demand distribution. In addition, future research can 

evaluate the cost performance of various methods, including that proposed in this paper, for 
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determining the purchase lot-size of cores. A number of authors (e.g., Silver, 1976; Ferrer and 

Whybark, 2001; Galbreth and Blackburn, 2010)  have proposed modifications/extensions to 

existing lot-sizing models to account for some or all of the quantity, quality and timing 

uncertainties inherent in the sourcing of cores. A future comparison of purchase lot-sizing 

policies for cores could yield fruitful managerial insights. Another avenue for future research is the 

investigation of the effects of both sales forecast model misspecification and sales forecast error when 

estimating the net demand distribution.  Empirical analysis is also required for the types of returns 

generating processes observed in various reuse operations (e.g., recycling, remanufacturing, refurbishing 

of commercial returns, etc…), which may require models that can capture more complexity than that of 

the distributed lag model. A key question remaining is what improvements in the forecasting accuracy of 

net demand are realistically achievable. The results of this paper suggests that there are significant 

benefits that can result if effort is put towards achieving such improvements.   
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Table 1: Parameters for the numerical example 

𝑝 𝜆 𝛼 𝜉 t jc c   t jS S   t jh h   𝐻 

0.2 0.0198 2.14 0.90 385 173 57.75 3 

 

  



www.manaraa.com

28 
 

Table 2: Investigated effects 

Name Label Number 
of Levels 

Values 

Coefficient of variation (sales) CV 5 0.0,0.1,0.2,0.3,0.4 
Sales model SM 2 RN (Random noise), 

AR (Autoregressive) 
Forecast error variance (sales) EV 3 𝜅 = 0%, 20%, 50% 

Estimate of net demand CDF (i.e., ˆ ˆ,t jF F  ) ND 2 Dynamic, Static 

Service level SL 4 85%, 90%, 95%,99% 
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Table 3: Percentage cost comparisons of sales forecast vs. actual sales1 with dynamic estimation 
of the net demand CDF 

Service level 
  

Sales model (SM) 

Autoregressive (AR)  Random noise (RN) 

Coefficient of variation (CV)  Coefficient of variation (CV) 

0 0.1 0.2 0.3 0.4  0 0.1 0.2 0.3 0.4 

85% 0.0 0.8 0.9 1.2 1.3  0.0 4.1† 6.2† 6.6† 8.2* 
90% 0.0 0.6 0.7 1.1 1.1  0.0 3.8† 5.9† 6.3† 7.7* 
95% 0.0 0.5 0.6 0.7 0.8  0.0 3.5 5.6† 5.8† 7.2* 
99% 0.0 0.1 0.4 0.5 0.7  0.0 3.2 5.2† 5.6† 6.6† 

†Significant at less than 0.05; *Significant at less than 0.01 

Note: 1-Actual sales were generated using (13)(10), Forecasted sales were generated using (10)(13) 
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Table 4: Percentage cost comparisons of static vs. dynamic estimation of the net demand CDF 

Sales 
 model 

Service  
level 

Forecasted sales1  Actual sales2 

 

 

Coefficient of variation (CV)  Coefficient of variation (CV) 

 0 0.1 0.2 0.3 0.4  0 0.1 0.2 0.3 0.4 

Autoregressive (AR) 

85% 10.0* 9.6* 8.8* 8.4* 8.2*  10.0* 9.8* 9.1* 8.6* 8.3* 

90% 7.3* 6.6† 6.4† 5.9† 5.7†  7.3* 6.9* 6.7† 6.1† 5.5† 

95% 2.6 1.6 1.5 1.3 0.5  2.6 2.2 1.5 1.4 0.7 
99% -8.4* -8.2* -8.0* -7.7* -6.6†  -8.4* -7.9* -7.8* -6.9* -6.6† 

             
  0 0.1 0.2 0.3 0.4  0 0.1 0.2 0.3 0.4 

Random (RN) 

85% 16.5* 16.3* 13.1* 11.6* 10.1*  16.5* 20.3* 19.0* 18.7* 18.5* 
90% 11.7* 11.0* 9.0* 8.5* 6.8*  11.7* 16.3* 15.2* 14.8* 14.6* 
95% 5.5† 4.6† 4.2† 3.8† 1.4  5.5† 10.6* 9.7* 8.5* 8.3* 
99% -7.6† -7.3† -7.0† -6.7† -5.9†  -7.6† -6.7† -3.5 -2.4 -1.1 

†Significant at less than 0.05; *Significant at less than 0.01 

Notes:  1-Sales generated using (10)(13); 2-Sales generated using (13)(10)
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Table 5: Mean Absolute Scaled Error (MASE) 1 comparisons of dynamic distributed lag model 
estimation versus Holt’s method 

Estimation 
method 
  

Sales model (SM) 

Autoregressive (AR)  Random noise (RN) 

Coefficient of variation (CV)  Coefficient of variation (CV) 

0 0.1 0.2 0.3 0.4  0 0.1 0.2 0.3 0.4 

Holt’s 0.37 0.47 0.60 0.71 0.83  0.61 0.67 0.49 0.52 0.75 
Distr. Lag Model 0.14 0.15 0.15 0.16 0.17  0.83 0.87 0.77 0.78 0.99 

Note: 1-MASE<1 indicates that the proposed forecasting method gives on average smaller errors than the 
3 step ahead errors from the naïve forecast. The smaller the MASE the better is the forecasting method 
(Hyndman and Koehler, 2006). 
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